Plutonium hydride

Plutonium hydride
Identifiers
CAS number 17336-52-6 Y
Jmol-3D images Image 1
Properties
Molecular formula H2Pu
Molar mass 246.08 g mol−1
Exact mass 246.016 g mol-1
Appearance Black, opaque crystals
 N (verify) (what is: Y/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Plutonium hydride is the chemical compound with the formula PuH2. It is one of two characterised hydrides of plutonium, the other is PuH3.[1] PuH2 is non-stoichiometric with a composition range of PuH2 – PuH2.7. Additionally metastable stoichiometries with an excess of hydrogen (PuH2.7 – PuH3) can be formed.[1] PuH2 has a cubic structure. It is readily formed from the elements at 1 atmosphere at 100–200 °C:[1]

Pu + H2 → PuH2

Studies of the reaction of plutonium metal with moist air at 200–350 °C showed the presence of cubic plutonium hydride on the surface along with Pu2O3, PuO2 and a higher oxide identified by X-ray diffraction and X-ray photoelectron spectroscopy as the mixed-valence phase PuIV3−xPuVIxO6+x.[2] Investigation of the reaction performed without heating suggests that the reaction of Pu metal and moist air the production of PuO2 and a higher oxide along with adsorbed hydrogen, which catalytically combines with O2 to form water.[3]

Plutonium dihydride on the surface of hydrided plutonium acts as a catalyst for the oxidation of the metal with consumption of both O2 and N2 from air.[4]

References

  1. ^ a b c Gerd Meyer, 1991, Synthesis of Lanthanide and Actinide Compounds Springer, ISBN 0-79231018-7.
  2. ^ J. L. Stakebake, D. T. Larson, J. M. Haschke: Characterization of the Plutonium-water Reaction II: Formation of a Binary Oxide containing Pu(VI), Journal of Alloys and Compounds, 202, 1–2, 1993, 251–263, doi:10.1016/0925-8388(93)90547-Z.
  3. ^ J. M. Haschke, T. H. Allen, L. A. Morales: Surface and Corrosion Chemistry of Plutonium, Los Alamos Science, 2000, 252.
  4. ^ John M. Haschke Thomas H. Allen: Plutonium Hydride, Sesquioxide and Monoxide Monohydride: Pyrophoricity and Catalysis of Plutonium Corrosion, Journal of Alloys and Compounds, 320, 1, 2001, 58–71, doi:10.1016/S0925-8388(01)00932-X.

See also